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Abstract

Bayesian networks (BNs) are used to represent and ef�ciently compute with multi-variate probability distributions
in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering
and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian
network. There is a lack of understanding of how clique tree computation time, and BN computation time in more
general, depends on variations in BN size and structure. On the one hand, complexity results tell us that many
interesting BN queries are NP-hard or worse to answer, and it is not hard to �nd application BNs where the clique
tree approach in practice cannot be used. On the other hand, it is well-known that tree-structured BNs can be used
to answer probabilistic queries in polynomial time. In this article, we develop an approach to characterizing clique
tree growth as a function of parameters that can be computed in polynomial time from BNs, speci�cally: (i) the
ratio of the number of a BN's non-root nodes to the number of root nodes, or (ii) the expected number of moral
edges in their moral graphs. Our approach is based on combining analytical and experimental results. Analytically,
we partition the set of cliques in a clique tree into different sets, and introduce a growth curve for each set. For the
special case of bipartite BNs, we consequently have two growth curves, a mixed clique growth curve and a root clique
growth curve. In experiments, we systematically increase the degree of the root nodes in bipartite Bayesian networks,
and �nd that root clique growth is well-approximated by Gompertz growth curves. It is believed that this research
improves the understanding of the scaling behavior of clique tree clustering, provides a foundation for benchmarking
and developing improved BN inference and machine learning algorithms, and presents an aid for analytical trade-off
studies of clique tree clustering using growth curves.

1 Introduction
Bayesian networks play a central role in a wide range of automated reasoning applications, including in diagnosis,
sensor validation, probabilistic risk analysis, information fusion, and error correction [51, 6, 46, 31, 30, 47, 36]. A
crucial issue in reasoning using BNs, as well as in other forms of model-based reasoning, is that of scalability. We
know that most BN inference problems are computationally hard in the general case [10, 50, 48, 1], thus there may
be reason to be concerned about scalability. One can make progress on the scalability question by studying classes of
problem instances analytically and experimentally. Problem instances may come from applications or they may be
randomly generated. In the area of application BNs, encouraging as well as discouraging scalability stories have been
told. For example, a prominent bipartite BN for medical diagnosis is known to be intractable using current technology
[51]. Error correction coding, which can be understood as BN inference, is also not tractable but has empirically been
found to be solvable with high reliability using inexact BN techniques [18, 30]. On the other hand, it is well-known
that BNs that are tree-structured, including the so-called naive Bayes model, are solvable in polynomial time using
exact inference algorithms. There are also encouraging empirical results for application BNs that are �close� to being
tree-structured or more generally application BNs that are not highly connected [24, 36].
Clique tree clustering, where inference takes the form of propagation in a clique tree compiled from a Bayesian

network (BN), is currently among the most prominent Bayesian network inference algorithms [27, 2, 49]. The perfor-
mance of tree clustering algorithms depends on a BN's treewidth or the optimal maximal clique size of a BN's induced
clique tree [16, 11, 15]. The performance of other exact BN inference algorithms also depends on treewidth.
A key research question is, then, how the clique tree size of a BN (and consequently, inference time) depends on

some structural measure of BNs. One way to investigate this is through the use of distributions of problem instances
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[52, 5, 11, 41, 21]. Taking this approach, and varying the ratio C=V between the number of leaf nodes C and the
number of non-leaf nodes V in BNs, an easy-hard-harder pattern has been observed for clique tree clustering [37].
In this article, we develop a more precise understanding of this easy-hard-harder pattern. This is done by for-

mulating macroscopic and approximate models of clique tree growth by means of restricted growth curves, which we
illustrate by using bipartite BNs. Analytically, we consider bipartite BNs created by a random process, the BPART
algorithm [37]. The use of a random process represents the fact that exact BN details might not be known (we might
in the conceptual design phase) or the fact that there is in fact a setting with a certain amount of randomness to it. For
the sake of this work, we then assume that a clique tree propagation algorithm, operating on a clique tree compiled
from a BN, is executed in order to answer probabilistic queries of interest. We introduce a random variable for total
clique tree size. This random variable is, for the case of bipartite BNs, the sum of two random variables, one for the
size of root cliques and one for the size of mixed cliques. Corresponding to the random variable for total clique tree
size, we introduce a continuous growth curve for total clique tree size which is the sum of growth curves for the size
of root cliques and mixed cliques. A key �nding of ours is that Gompertz growth curves are justi�ed on theoretical
grounds and also �t very well to experimental data generated using the BPART algorithm [37]. Of particular interest
is the growth curve for root clique size, where Gompertz curves of the form g(1)e��e�x (where g(1), �, and  are
parameters) turns out to be useful. Our analysis using Gompertz growth curves is novel; they are common in biolog-
ical and medical research [4, 29] but have not previously been used to characterize clique tree growth. We provide
improved analysis compared to previous research, where an easy-hard-harder pattern and approximately exponential
growth as a function of C=V -ratio were established [37].
LetW be a random variable representing the number of moral edges in moral graphs induced by random BNs. In

addition to x = C=V , we consider x = E(W ) as an independent variable. In experiments, we compared different
growth curves and investigate x = C=V versus x = E(W ) as independent variables for Gompertz growth curves. We
sampled bipartite BNs using the BPART algorithm. For the number of root nodes, V , we used V = 20 and V = 30.
The number of leaf nodes was also varied, thereby creating BNs of varying hardness. The experimental approach was
to randomly generate sample BNs; 100 BNs perC=V -level were generated. A clique tree inference system, employing
the minimum �ll-in weight heuristic, was used to generate clique trees for the sampled BNs. Linear regression was
used to obtain values for the parameters � and  based on a linear form of the Gompertz growth curve; values for
g(1) were obtained by analysis.
This research is signi�cant for the following reasons. First, analytical growth curves improve the understanding

of clique tree clustering's performance. Consider Kepler's three laws of planetary motion, developed using Brahe's
observational data of planetary movement. There is a need to develop similar laws for clique tree clustering's perfor-
mance, and in this article we obtain laws in the form of Gompertz growth curves for certain bipartite BNs [37]. The
Gompertz growth curves give signi�cantly better �t to the raw data than alternative curves, provide better insight into
the underlying mechanisms of the algorithm, and may be used to approximately predict the performance of clique tree
clustering. Our results are thus signi�cant for clique tree clustering, a prominent exact Bayesian network inference
algorithm which is studied in detail. Since the performance of other exact BN inference algorithms � including con-
ditioning [44, 11] and elimination algorithms [28, 53, 14] � also depends on optimal maximal clique size, our results
may have signi�cance to these algorithms as well. Second, growth curves can be used to summarize performance of
different BN inference algorithms or different implementations of the same algorithm on benchmark sets of problem
instances, and thereby aid in evaluations. Suppose that the growth curves g1(x) and g2(x) were obtained by bench-
marking slightly different clique tree algorithms. Compared to looking at and evaluating potentially large amounts
of raw data, it may be easier to understand the performance difference between the two algorithms by studying the
curves for g1(x) versus g2(x) or by comparing their respective parameter values �1 and 1 versus �2 and 2. Third,
growth curves provide estimates of resource consumption in terms of clique tree size. Resource bounds, for exam-
ple on memory size and inference time, represent requirements from applications and can also be expressed in terms
of clique tree size. Hence, this approach enables trade-off studies of resource consumption versus resource bounds,
which is important in resource-bounded reasoners [39, 33].
The rest of this article is organized as follows. After introducing notation and background concepts in Section

2, we study the development and growth of BNs, causing corresponding clique tree growth, in Section 3. The issue
of independent variables for growth curves, and in particular the C=V -ratio and the expected number of moral edges
E(W ), is studied in Section 3.1. In Section 3.2, we describe how growth curves can provide a macroscopic model
of how clique trees grow as a function of C=V -ratio or expected number of moral edges E(W ). In Section 4, we
present experiments with varying number of BN root and leaf nodes. We compare different mathematical models
of growth, and �nd that Gompertz growth curves give the best �t to sample data. We conclude and indicate future
research directions in Section 5. This article extends and revises an earlier conference paper [34].
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2 Background
Graphs, and in particular directed acyclic graphs as introduced in the following de�nition, play a key role in Bayesian
networks.

De�nition 1 (Directed acyclic graph (DAG)) Let G = (X;E) be a non-empty directed acyclic graph (DAG) with
nodes X = fX1; : : : ; Xng for n � 1 and edges E = fE1; : : : ; Emg for m � 0. An ordered tuple Ei = (Y;X),
where 0 � i � m andX , Y 2X , represents a directed edge from Y toX . �X denotes the parents ofX: �X = fY j
(Y;X) 2Eg. Similarly, 	X denotes the children ofX: 	X = fZ j (X;Z) 2Eg. The out-degree and in-degree of a
node X is de�ned as o(X) = j	X j and i(X) = j�X j respectively.

In the rest of this article we assume that DAGs and BNs are non-empty, even when not explicitly stated as in
De�nition 1. The following classi�cation of nodes in graphs, including in BNs, turns out to be useful when we discuss
the performance of BN inference algorithms.

De�nition 2 Let G = (X;E) be a non-empty DAG with X 2 X . If i(X) = 0 then X is a root node. If i(X) > 0
then X is a non-root node. If i(X) > 0 and o(X) = 0 then X is a leaf node. If o(X) > 0 then X is a non-leaf node.
If o(X) > 0 and i(X) > 0 then X is a trunk (non-leaf and non-root) node .

With the concepts from De�nition 2 in hand, we classify the nodes in a DAG as follows.

De�nition 3 Let G = (X;E) be a DAG. We identify the following subsets of X: V = fX 2X j i (X) = 0g (the
root nodes); C = fX 2 X j i (X) > 0 and o(X) = 0g (the leaf nodes); T = fX 2 X j i (X) > 0 and
o(X) > 0g (the trunk nodes); �V = fX 2X j i (X) > 0g (the non-root nodes); and �C = fX 2 X j i (X) = 0 or
o(X) > 0g (the non-leaf nodes).

A Bayesian network (BN) is a DAG with an associated set of conditional probability distributions [45].

De�nition 4 (Bayesian network) A Bayesian network is a tuple � = (X , E, P ), where (X , E) is a DAG with con-
ditional probability distributions P = fPr(X1 j �X1

); : : : ;Pr(Xn j �Xn
)g. Here, Pr(Xi j �Xi

) is the conditional
probability distribution for Xi 2 X . Further, let n = jXj and let �Xi represent the instantiation of the parents �Xi

of Xi. The independence assumptions encoded in (X , E) imply the joint probability distribution

Pr(x) = Pr(x1; : : : ; xn) = Pr(X1 = x1; : : : ; Xn = xn) =
nY
i=1

Pr(xi j �Xi
): (1)

In this article we will restrict ourselves to discrete random variables, and �BN node� will thus mean �discrete BN
node�. Let a BN node X 2 X have states fx1; : : : ; xmg. We then use the notation 
X = 
(X) = fx1; : : : ; xmg
to represent the state space of X . In our discrete setting, a conditional probability distribution Pr(Xi j �Xi

) is also
denoted a conditional probability table (CPT).
A BN is provided input or evidence by clamping zero or more of its nodes to their observed states. An instantiation

of all non-clamped nodes is an explanation, formally de�ned as follows.

De�nition 5 (Explanation) Consider a BN � = (X , E, P ) with X = fX1; : : :; Xng and evidence e = fX1 =
x1, : : :, Xm = xmg where 0 � m < n. An explanation x is de�ned as x = fxm+1; : : :; xng = fXm+1 =
xm+1; : : :; Xn = xng.

When discussing an explanation x, the BN � is typically left implicit. Given evidence, answers to different
probabilistic queries can be computed by means of a BN. One is often interested in computing answers to queries of
the formPr(x j e), and in particular in �nding a most probable explanation (MPE). AnMPE is an explanation x� such
that Pr(x� j e) � Pr(x j e) for any other explanation x. In addition to MPE, the computation of posterior marginals
(or beliefs) and maximum aposteriori probability (MAP) is of great interest. We distinguish between complete and
incomplete algorithms for Bayesian network computation. Complete algorithms include clique tree propagation
[27, 2, 23, 49], conditioning [44, 11], variable elimination [28, 53, 14], and arithmetic circuit evaluation [12, 8, 7].
Incomplete algorithms, and in particular stochastic local search algorithms, have been used for MPE [25, 32, 19, 35]
as well as MAP [41, 42] computation. Another important distinction is that between algorithms that rely on an off-
line compilation step � for example join tree propagation and arithmetic circuit evaluation � and those that do not
� for example variable elimination and stochastic local search. Compilation has several bene�ts when it comes to
integration into resource-bounded systems including hard real-time systems [39, 33].
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Figure 1: Two classes, Class A and Class B, of bipartite graphs and Bayesian networks (BNs). In both Class A and
Class B BNs, all leaf nodes have the same number of parents P (here, P = 2). In Class A BNs, all root nodes have
the same number of children. In Class B BNs, the number of children may vary between the root nodes, as can be
seen in this �gure.

Our main emphasis in this article is on exact algorithms and in particular compilation using the HUGIN clique
tree clustering approach [27, 23]. The HUGIN approach is interesting in its own right, and in addition there is a
well-established relationship to arithmetic circuits [43]. A clique tree �000, which is used for on-line computation, is
constructed from a BN � = (X , E, P ) in the following way by the HUGIN algorithm [27, 2]. A moral graph �0 is
�rst constructed by making an undirected copy of � and then augmenting it with moral edges as follows. For each
node X 2 X , HUGIN adds to �0 a moral edge between each pair of nodes in �X if no such edge already exists in
�0. Second, HUGIN creates a triangulated graph �00 by heuristically adding �ll-in edges to �0 such that no chordless
cycle of length greater than three exists. Third, a clique tree �000 is created from the triangulated graph �00. A clique
tree is created such that for any two nodes F andH in the clique tree, all nodes between them contain F \H . Using
�000, HUGIN can compute marginals [27] or MPEs [13], and the compilation and propagation times are in both cases
essentially determined by the size of the clique tree �000.
The following parameters are useful in characterizing clique trees, and thereby also computation times for algo-

rithms that use clique trees.

De�nition 6 (Clique tree parameters) Let � = f1; : : : ; �g be the set of cliques in a clique tree �000. The state
space size g of a clique  2 � , is de�ned as

g = j
 j =
Y
X2

j
X j ; (2)

where X 2X is a node in � = (X , E, P ). The total clique tree size of �000 (and induced by �) is de�ned as

k =
X
2�

j
 j : (3)

The performance of many complete BN inference algorithms has been found to depend on treewidth $� or on
optimal maximal clique size ��, where$� = ��� 1 [27, 15]. Treewidth computation is NP-complete [3], and greedy
triangulation heuristics that compute upper bounds on treewidth (or optimal maximal clique size) are typically used in
practice [26]. A key research question is how treewidth and clique tree size relates to parameters that can be computed
for a BN in polynomial time, such as the following parameters:

� V = jV j, the number of root nodes in a BN, with V � 1.

� T = jT j, the number of trunk nodes in a BN, with T � 0.

� C = jCj, the number of leaf nodes in a BN, with C � 0; so the total number of BN nodes is n = C + V + T .

� Pavg, the average number of parents for all non-root nodes �V � X in a BN, with 1 � Pavg � N � 1.

� Savg, the average number of states for all BN nodesX , with Savg � 1.

Using the parameters above, one can study BN inference and learning algorithms. While our approach is general,
we study bipartite BNs in detail in this article. In a bipartite BN � = (X , E, P ), the nodes inX are partitioned into
root nodes V and leaf nodes C according to the following de�nition.
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De�nition 7 (Bipartite DAG) LetG = (X;E) be a DAG. IfX can be split into partite sets V = fX 2 X j i (X)
= 0g (the root nodes) and C = fX 2X j i (X) > 0g (the leaf nodes) such that any (V;C) 2 E is such that V 2 V
and C 2 C, thenG is a bipartite DAG.

Important classes of application BNs are bipartite or have bipartite induced subgraphs. Naïve Bayes classi�ers
are, for example, a special case of bipartite BNs with only one root node. Application areas where bipartite BNs can
be found include gas path diagnosis for turbofan jet engines [47], sensor validation and diagnosis of rocket engines
[6], diagnosis in computer networks [46], medical diagnosis [51], and error correction [30]. A well-known bipartite
BN for medical diagnosis is QMR-DT; in it diseases are root nodes and symptoms are leaf nodes [51]. QMR-DT
may be used to compute the most likely instantiation of the disease nodes (i.e., the most probable explanation), given
known symptoms [51, 22, 40]. In the area of error correction, a close relationship has been established between error
correction decoding in the presence of noise and Bayesian network computation [31, 30]. Speci�cally, the subgraph
induced by nodes corresponding to the hidden information and codeword bits in a decoding BN in fact forms a bipartite
BN [31, Figure 7].
In addition, general BNs often have non-trivial bipartite components, and bipartite BNs therefore form a stepping

stone for these more general, multi-partite BNs. Bipartite BNs also generalize satis�ability (SAT) instances: root
nodes correspond to propositional logic variables and leaf nodes correspond to propositional logic clauses [50, 48, 37].
Special inference algorithms have been designed for bipartite BNs; see for example the study of approximate inference
algorithms for bipartite BNs by Ng and Jordan [40].
For the purpose of this article, our main emphasis is on distributions over BNs including randomly generated BNs,

as this approach admits a very systematic investigation of BN inference algorithms [52, 21, 37]. Bipartite BNs may
be generated randomly using the BPART algorithm [37], which is a generalization of an algorithm that randomly
generates hard and easy problem instances for satis�ability [38]. For randomly generated satis�ability (SAT) problem
instances, an easy-hard-easy pattern was established as a function of the C=V -ratio for the Davis-Putnam search
algorithm [38]. Here, C is the number of propositional clauses and V is the number of propositional variables, and
SAT computation is a special case of computing a most probable explanation in BNs [10, 50]. What the easy-hard-easy
pattern means is that problem instances go from easy to hard and back to easy again as the C=V -ratio increases. In
other words, the hardest problem instances are to be found in the hard region of the easy-hard-easy pattern; this region
is also known as the the phase transition region [38, 9, 17].
The BPART algorithm, for which we use the signature BPART(V , C, P , S), operates as follows.1 First, V = jV j

root nodes and C = jCj leaf nodes, all with S states, are created. For each leaf node, P parent nodes fX1, . . . , XP g
are picked uniformly at random without replacement among the V root nodes, creating Class B BNs (see Figure 1). In
Class A BNs, which form a strict subset of Class B BNs [37], parents are picked such that all root nodes have exactly k
or k+1 children for some k � 0. Conditional probability tables (CPTs) of all nodes are also constructed by BPART;
however in this article we focus on the impact of the structural parameters V , C, P = Pavg, and S = Savg on clique
tree size. As defaults, parameter values P = 2 and S = 2 are employed, and we use BPART(V , C) as an abbreviation
for BPART(V , C, 2, 2) or when P and S do not matter. Also, we use BPART(V , C, P ) as an abbreviation for
BPART(V , C, P , 2) or when S does not matter. The total number of edges in a BPART BN is clearly E = C � P .
Here is an example of using clique tree clustering on a small BPART BN.

Example 8 (BPART BN) Figure 2 shows how a BPART BN may be compiled into a clique tree. For each BN leaf
node C 2 fC1; C2; C3; C4; C5; C6g, a clique is created. In addition, there are two cliques containing BN root nodes
only, namely the cliques fV1, V2, V4g and fV2, V3, V4g.

Note that tree clustering's moralization step, which creates a moral graph �0 from a BPART BN �, ensures that
there are edges between all P root nodes that share a leaf node. In order to keep the discussion succinct we often
say that BPART creates moral edges without explicitly mentioning tree clustering's moralization step, which actually
creates the edges when working on a BPART BN. The processing of the bipartite BN in Figure 2 illustrates the crucial
formation of cycles in a BN's moral graph and the resulting generation of �ll-in edges. In larger BNs, it is important
but also very dif�cult to understand and predict clique tree clustering's cycle-generation and �ll-in processes, which
again determine maximal clique size and total clique tree size. A main contribution of this article, further discussed
in Section 3 and Section 4, is how we improve the understanding of the growth of total clique tree size as a function
of BN growth.

1The more extensive signature BPART(Q, F , V , C, S, R, P ) was previously used [37]. Here, Q and F are used to control the conditional
probability table (CPT) types of BN root and non-root nodes respectively. The parameter R is used to control the regularity in the number of
children of root nodes. Since our emphasis in this article is on the impact of the parameters V , C, S, and P , we typically use the default values for
Q, F , and R , and also simplify the signature to BPART(V , C, P , S).
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Figure 2: Compilation of BPART BN � (top) to clique tree �000 (bottom). There is a loop (V1; V2; V3; V4) in the moral
graph �0, leading to a �ll-in edge (V2; V4) in triangulated graph �00, which again leads to cliques fV4; V1; V2g and
fV4; V2; V3g in the clique tree �000.

In the bipartite case, all non-root nodes are leaf nodes (or in other words there are no trunk nodes so T = 0) and we
have n = C + V . We consider only non-empty BNs and so V > 1 and the C=V -ratio is always well-de�ned. In the
important special case of bipartite BNs, the C=V -ratio is the ratio of the number of leaf nodes to the number of root
nodes. It has been shown analytically and empirically that the ratio of C to V , the C=V -ratio, is a key parameter for
BN inference hardness [37]. Speci�cally, the C=V -ratio can be used to predict upper and lower bounds on the optimal
maximal clique size (or treewidth) of the induced clique tree for BNs randomly generated using the BPART algorithm.
Using this approach, upper bounds on optimal maximal clique sizes as well as inference times have been computed
[37]. Using regression analysis, the mean number of nodes in the maximal clique was found to be approximately linear
in the C=V -ratio. This linear growth translates into an approximately exponential growth in maximal clique size �
and consequently in clique tree clustering computation time � as a function of the C=V -ratio. This was found to be
true for both Class A and Class B BNs. However, the Class A (or regular) BNs contained maximal cliques that were
from 3.0 to 5.4 times larger than maximal cliques in the Class B (or irregular) BNs. By extending previous research
on random generation of BN instances, the BPART algorithm provides an approach to easily construct BN instances
of varying degrees of dif�culty, since the C=V -ratio can be read directly off a BN in linear time, while computing
treewidth is NP-hard.

3 Developing Model-Based Reasoners using Bayesian Networks
The development of model-based reasoners, including those that use Bayesian networks, typically involves an iterative
or spiral process. One starts with a simple model, which is re�ned and extended as further information, experimental
results, or additional requirements become available. In other words, an iterative development process often manifests
itself as model growth, in our case Bayesian network growth. More speci�cally, if we consider bipartite Bayesian
networks used for diagnosis [51, 6, 46, 47], we may distinguish between these two forms of growth:

� Growth in the number of root nodes V , to capture additional faults that may occur in the system being modeled.
In a gas path diagnosis BN, these root nodes represent health parameters for a turbofan engine [47], and by
increasing the number of health parameters a more comprehensive diagnosis can be computed. In a BN for
medical diagnosis, additional root nodes may be introduced because one wants to consider more diseases [51].
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Figure 3: An example of how a bipartite BN with V = 4 root nodes andC = 6 leaf nodes (top right) may be developed
or grown from a bipartite BN with V = 2 root nodes and C = 4 leaf nodes (bottom left).

� Growth in the number of leaf nodes C, to represent additional evidence that can be used to distinguish between
the underlying faults by computing marginals, MPE, or MAP. In a BN for gas path diagnosis, these leaf nodes
can represent additional measurements made on the turbofan engine [47]. In a BN for medical diagnosis, these
leaf nodes may represent additional symptoms or tests [51].

A hypothetical BN development process, where small BNs are used for the purpose of illustration, is provided in
Figure 3. The �gure shows two different BN growth paths leading from a BN with V = 2 and C = 4 (lower left
corner of Figure 3) to a BN with V = 4 and C = 6 (upper right corner of Figure 3).
Even though we place emphasis on growth or increase here, it is really the concept of change that is important.

Our results apply to change in general, both increases and decreases, however the increase or growth perspective
is more prevalent. For example, both in knowledge engineering and machine learning one typically develops an
application by growing a BN iteratively. In addition, we want to emphasize the connection with biological and
medical growth processes [4, 29]. In any case, our work represents a shift away from a particular BN � to families or
sequences (�(1), �(2), �(3), �(4), . . . ) of BNs and the processes by which BNs are developed or grown. The growth
processes might be automatic, as in machine learning or data mining, or manual, as in knowledge engineering by direct
manipulation of a BN or by using a high-level language from which BNs are auto-generated [36].
An illustration of the connection between BN growth and clique tree growth is provided in Figure 4. It is important

to vary a cause (say, the number of leaf nodes in BNs or the density of edges in the moral graphs of BNs) such that
a wide range of effects (different clique tree sizes) can be studied. At the highest level, we want to communicate two
main ideas in this article. The �rst idea is the use of a macroscopic growth curve gT (x) for total clique tree size,
where x is an independent parameter. As an illustration, gT (x) for bipartite BNs is emphasized in Section 3.2, but the
approach clearly generalizes beyond bipartite BNs. As a second idea, discussed in Section 3.1, we investigate different
independent parameters x in gT (x). The use of x = C=V , where C is number of leaf nodes and V is number of root
nodes, is well-known. A novel aspect of this work is the investigation of an alternative to C=V .
The research on the BPART algorithm and its generalization, the MPART algorithm, extends existing research

on generating hard instances for the satis�ability problem [38] as well as existing research on randomly generating
BNs [52, 5, 25, 11, 41, 20, 21, 37]. Our work on BPART in this article is different from previous research in several
ways including the following: The emphasis in this article is on total clique tree size instead of size of largest clique,
and in particular we form total clique tree size by partitioning the cliques � in the clique tree as discussed in Section
3.2. We closely study the relationship between independent parameters (including C=V ) with total clique tree size as
the dependent parameter. More speci�cally, we consider how one can randomly construct Bayesian networks (using
BPART) in a controlled way such that the growth of total clique size, as a function of C=V or other independent
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Figure 4: How clique tree size (bottom) varies when the number of BN nodes is varied (top). Horisontally, this �gure
illustrates how a BN may grow by having leaf nodes added. Vertically, this �gure shows how BNs are compiled into
clique trees. The growth of a BPART(4, 2) BN (top left) into a BPART(4, 4) BN (top middle) and �nally a BPART(4,
6) BN (top right) is depicted in the top row. Clique trees compiled from these BNs are shown in the bottom row.

parameters, can be approximately but reliably predicted.

3.1 Independent Parameters for Bayesian Networks and Moral Graphs
LetW be the random number of moral edges. Then E(W ) is the expected number of moral edges. It turns out to be
fruitful to use x = E(W ) as the independent parameter in gT (x). In the rest of this section we discuss this issue in
more detail.

3.1.1 Balls and Bins

The balls and bins model, where balls are placed uniformly at random into bins, turns out to be useful in our analysis
of clique tree clustering's moralization step. Following the balls and bins model, we letm denote the number of balls
and n denote the number of bins. Further, we letX and Y be random variables representing the number of empty and
occupied bins respectively. The expected number of empty bins X is

E(X) = n (1� 1=n)m : (4)

The expected number of occupied bins Y is

E(Y ) = n (1� (1� 1=n)m) : (5)

It is well-established that the expected number of empty bins X can be approximated as

E(X) � ne�m=n, (6)

while the expected number of occupied bins Y is approximated by

E(Y ) � n
�
1� e�m=n

�
: (7)

How does the balls and bins model apply to the moral graph created from a BN? The bins are all possible edges in
the moral graph, and some nodes induce actual edges (corresponding to balls) in the moral graph. For clarity, we say
edge-bin instead of bin and edge-ball instead of ball. The formal de�nitions are as follows.
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Figure 5: A bipartite Bayesian network (left) is made into a moral graph with moral edges (middle). We focus on the
root nodes fV1, V2, V3, V4g and in particular the moral edges in the moral graph's subgraph induced by the root nodes
(right). Both the moral edges actually created (edge-bins �lled with edge-balls as shown using solid lines) as well as
the potential moral edges not created (edge-bins not �lled with edge-balls as shown using dashed lines) are shown to
the right above.

De�nition 9 (Edge-bin) Consider the non-leaf nodes �C in a BN. An edge-bin is a possible edge in the BN's moral
graph, between two non-leaf nodes fYi, Yjg, where Yi; Yj 2 �C and i 6= j. The set of all edge-bins is ffYi; Yjg j
Yi; Yj 2 �C and i 6= jg.

De�nition 10 (Edge-ball) Consider a non-root node Z 2 �V in a BN, and suppose that �Z = fY1; :::; YP g � �C. An
edge-ball is one edge fYi, Yjg, where 1 � i; j � P and i 6= j, among the set of moral edges ffY1, Y2g, fY1, Y3g, ...,
fYP�1, YP gg induced by Z.

In our analysis of clique tree clustering, edge-bins are all possible edges in the moral graph and edge-balls are
actual edges induced in a moral graph. We use, as will be seen shortly, a balls and bins approach to obtain the expected
number of moral edges in the moral graphs induced by distributions of BNs.
We now consider bipartite BNs where leaf nodes have exactly two parents (Section 3.1.2) or an arbitrary number

of parents (Section 3.1.3). For bipartite BNs, the non-leaf nodes are the root nodes and the non-root nodes are the leaf
nodes.

3.1.2 Balls and Bins: Two Parents

In the BPART(V ,C, 2) model, all edge-bins are uniformly and repeatedly eligible for placing edge-balls into. In other
words, we have sampling with replacement. Here is an example of applying our balls and bins model, speci�cally we
consider the number of edge bins for V = 4.

Example 11 Figure 5 shows a BN sampled from the BPART(V , C, P , S) distribution with V = 4, C = 6, and
P = 2. For this particular BN, 4 of the 6 edge-bins contain edge-balls as can be seen in the subgraph induced by the
root nodes fV1, V2, V3, V4g to the right in Figure 5.

Intuitively, as the C=V -ratio increases, it gets more and more likely that a given moral edge gets picked two or
more times, or in other words that an edge-bin contains two or more edge-balls. This intuitive argument is formalized
in the following result.

Theorem 12 (Moral edges, exact) Let the number of moral edges created using BPART(V , C, P ) be a random
variableW . The expected number of moral edges E(W ) is, for P = 2, given by:

E(W ) =

�
V

2

� 
1�

�
1� 1

��
V

2

��C!
: (8)

Proof. We use the balls and bins model. Here, the edge-balls correspond to leaf nodes, of which there arem = C. The
edge-bins are all possible moral edges, of which there are n =

�
V
2

�
in a bipartite graph with V root nodes. Plugging

m and n into (5) gives the desired result (8).
It is sometimes convenient to use the following approximation of E(W ).

Theorem 13 (Moral edges, approximate) Let the number of moral edges created using BPART(V , C, P ) be a
random variableW . The expected number of moral edges E(W ) is, for P = 2, approximated as follows:

E(W ) �
�
V

2

��
1� exp

�
�C

��
V

2

���
: (9)
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Proof. We use the balls and bins model. Here, the edge-balls correspond to leaf nodes, of which there arem = C. The
edge-bins are all possible moral edges, of which there are n =

�
V
2

�
in a bipartite graph with V root nodes. Plugging

m and n into (7) gives the desired result (9).
Given (8) and (9), we can make a few remarks. In contrast to the C=V -ratio or the E=V -ratio, the expectation

E(W ) takes into account the effect of picking parents among pairs of BN root nodes with replacement. For low values
of C=V or E=V one would not expect the effect of replacement to be great, but for large C=V - or E=V -ratios the
difference may be substantial as illustrated in the following examples.

Example 14 (C = 30 leaf nodes) Let V = 30, C = 30, and P = 2. The expected number of moral edges is
E(W ) = 28:99 using (8) and E(W ) � 29:02 using (9).

Example 15 (C = 300 leaf nodes) Let V = 30, C = 300, and P = 2. The expected number of moral edges is
E(W ) = 216: 91 using (8) and E(W ) � 216: 74 using (9).

In Example 14, where E(W ) � C, it is unlikely that there are edge-bins with two or more edge-balls. In Example
15, on the other hand, it is very likely that there are edge-bins with two or more edge-balls, and E(W ) < C. In other
words, an additional leaf node has on average a smaller net effect on the number of moral edges in Example 15 than
in Example 14, and this is captured in E(W ) but not in C=V or E=V . This is important because the difference, as far
as cycle (and thus clique) formation in clique tree clustering is concerned, is between (i) no edge-ball and (ii) one or
more edge-balls.

3.1.3 Balls and Bins: Arbitrary Number of Parents

We now turn to BPART instances in which P is an arbitrary positive integer. The fundamental complication, as far as
the expected number of moral edges E(W ) is concerned, is this: For P > 2, BPART uses a combination of sampling
with replacement and sampling without replacement: Picking the parents of a given leaf node Ci amounts to sampling
without replacement, while picking parents for Ci when parents of Cj are already known (for i > j) amounts to
sampling with replacement. We now introduce, for the purpose of approximation, a variant BPART+ which works
exactly as BPART except that the P parent nodes are picked with replacement.

Theorem 16 (Moral edges, exact) Consider BPART+(C, V , P ) and let the number of moral edges created be a
random variable Z. The expected number of moral edges is:

E(Z) =

�
V

2

� 
1�

�
1� 1

��
V

2

��C(P2)!
: (10)

Proof. We use the balls and bins model, and again the number of edge-bins is n =
�
V
2

�
in a bipartite graph with V root

nodes. Since BPART+ employs sampling with replacement, the number of edge-balls ism = C �
�
P
2

�
. Pluggingm

and n into (5) gives the desired result (10).
We note that Theorem 16 is a generalization of Theorem 12. Further, we note that E(Z) can be used as an

approximation for E(W ) for BPART(V , C, P ) for P > 2, since it is well-known that sampling without replacement
can be approximated using sampling with replacement as the number of objects sampled from (here, the V root nodes)
grows. Finally, we note that E(Z) in (10) can be approximated in a way similar to the approximation of (8) by (9).
Why are the above balls and bins models of BN moralization interesting? The reason is that we are concerned with

the possible causes, at a macroscopic level, of clique tree size. The expected number of moral edges is potentially
one such cause or independent parameter x. In the context of random BNs, for example as generated by BPART, we
indirectly control the placement of moral edges, since we control the Bayesian network's structure through their, for
example BPART's, input parameters. The independent parameter xmay be de�ned in terms of a Bayesian network or
its moral graph. When it comes to the effect, namely tree clustering performance, it is natural to optimize (minimize)
the size of the maximal clique. Since this is hard [3], current algorithms including HUGIN use heuristics that upper
bound optimal maximal clique size and clique tree size. Such upper bounds on clique tree size are just referred to as
clique tree sizes in the following, and we seek in Section 3.2 a closed form expression y = g(x) for the dependent
parameter clique tree size as a function of the independent parameter x.

3.2 Dependent Parameters for Clique Trees: Growth Curves
Here, we develop models of restricted clique tree growth that extend exponential growth curves [37] that model
unrestricted growth. Even though Bayesian networks and clique trees are discrete structures, we approximate their
growth by using continuous growth curves (or growth functions) in order to simplify analysis.
We �rst discuss bipartite BNs in Section 3.2.1, and then generalize to arbitrary BNs in Section 3.2.2.
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Figure 6: The clique tree for a bipartite Bayesian network, with the two partitions of cliques indicated. Here, V4V1V2
and V4V2V3 are root cliques while the remaining six are mixed cliques. In addition, gR is the growth function for root
cliques while gM is the growth function for mixed cliques.

3.2.1 Growth Curves for Bipartite Bayesian Networks

For bipartite BNs, including BPART BNs, there are two types of nodes in the clique tree as re�ected in the following
de�nition.

De�nition 17 (Root clique, mixed clique) Consider a clique tree �000 with cliques � constructed from a bipartite BN
�. A clique  2 � is denoted a root clique if all the BN nodes in  are root nodes in �. A clique  2 � is denoted a
mixed clique if  contains at least one root node and at least one leaf node.

It is easy to see that root and mixed cliques are the only clique types induced by bipartite BNs. An illustration of
De�nition 17 is provided by the clique tree in Figure 6. The BN from which this clique tree is compiled is depicted
in Figure 2 and in Figure 4.
We now consider clique trees generated from random BNs. Random variables KT , KR, and KM are used to

represent the total clique tree size, the size of all root cliques, and the size of all mixed cliques respectively:

KT = KR +KM : (11)

Total clique tree size is the sum of the clique sizes of both types, as is appropriate for clique tree clustering algorithms
including HUGIN. We use (11) and linearity of expectation to obtain

E(KT ) = E(KR) + E(KM )

�T = �R + �M : (12)

When varying one or more of BPART's parameters we sometimes make that explicit in (12). For instance, the notation
�R(C) or �M (C) means that C is varied while V , P , and S are kept constant. In the experimental part of this article,
�R will be estimated using its sample mean �̂R. Collections of such sample means are then used to construct growth
curves.
Given the above vocabulary, we provide a qualitative discussion of the growth of BPART BNs in terms of theC=V -

ratio. This discussion is supported by previous (see [37, 34]) and current (see Section 4) experiments and motivates
our introduction of growth curves below. In order to keep our discussion relatively simple, we identify three broad
stages of clique tree growth, as far as the root cliques are concerned: The initial growth stage, the rapid growth stage,
and the saturated growth stage. The initial growth stage, where the C=V -ratio is �low�, is characterized by �few� leaf
nodes relative to the number of root nodes. There is consequently a relatively low contribution by root cliques to the
clique tree. This stage is to some extent dominated by mixed cliques � indeed as C=V ! 0 there are no root cliques
with more than one root node. During the rapid growth stage, where the C=V -ratio is �medium�, non-trivial root
cliques start showing up, due to formation of cycles where �ll-in edges are required in order to triangulate the moral
graph. An example of the emergence of such a cycle can be seen in Figure 2 and Figure 4. In this stage, and due to
the addition of �ll-in edges, the root cliques gradually overtake the mixed cliques in terms of their contribution to total
clique tree size. The saturated growth stage, where the C=V -ratio is �high�, is characterized by a �large� number of
leaf nodes relative to the number of root nodes. As C=V approaches in�nity, one root clique with V BN root nodes
(and size SV in the BPART model) emerges. In this stage, the mixed cliques eventually start to dominate again, since
there is one root clique which has reached its maximal size and cannot grow further. However, since the root clique
size is exponential in the number of root nodes, it typically takes a long time before the mixed cliques start dominating
again, and for non-trivial V this effect can be disregarded.
We emphasize that the discussion above is not entirely formal but is intended as a background for understanding

the need for growth curves, which we now introduce.
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Figure 7: Left: Gompertz curves g1(x) = 220e�5e
�0:3x

(green dotted curve), g2(x) = 220e�15e
�0:3x

(black solid
curve), and g3(x) = 220e�5e

�0:2x
(blue boxed curve). Right: Growth rates g01(x), g02(x) and g03(x) for the Gompertz

growth curves.

De�nition 18 (Clique tree growth curve ) Let gR : R! R and gM : R! R. Further, let gR(x) be the growth
curve for all root cliques and gM (x) the growth curve for all mixed cliques. The (total) clique tree growth curve for a
bipartite BN is de�ned as

gT (x) = gR(x) + gM (x):

In the following, we will often discuss gR(x) and gM (x) independently. In fact, the growth curve for mixed
cliques gM (x) is generally less dramatic than the growth curve for root cliques gR(x), and therefore we will place
more emphasis on gR(x).
A number of sigmoidal growth curves (�S-curves�) have been used to model restricted growth, including the

logistic, Gompertz, Complementary Gompertz, and Richards growth curves [4, 29]. For restricted growth curves,
limx!1 g(x) exists and we de�ne the restricting asymptote as

g(1) := lim
x!1

g(x): (13)

For unrestricted growth curves, including the exponential growth curve, limx!1 g(x) does not exist and there is no
asymptote g(1) as in (13).
It turns out that restricted Gompertz growth curves give very good approximations of root clique growth (see

Section 4), and we now study this family of curves in more detail.

De�nition 19 (Gompertz growth curve ) Let � ,  2 R with � > 0 and  > 0. A Gompertz growth curve is de�ned
as

g(x) = g(1)e��e
�x
: (14)

We now discuss some general properties of the form of g(x) in (14). For x = 0, clearly e�x = 1, giving
g(0) = (1)e�� in (14). In other words, the intersection of g(x) with the y-axis is determined by the parameters g(1)
and � in g(1)e�� . On the other hand, as x!1 in (14), e�x tends to 0, meaning that e��e

�x
tends to 1 and thus

limx!1 g(x) = g(1). The greater  is, the faster e�x tends to zero, leading to faster convergence to the asymptote
g(1).
The derivative g0(x) of the Gompertz growth curve

g0(x) =
d

dx
g(x) = g(1)�e�xe��e

�x
; (15)

is an expression of the growth rate of g(x); clearly g0(x) > 0 given our assumptions in De�nition 19.
In Figure 7 we investigate graphically how the parameters g(1) , �, and  impact the shapes of Gompertz curves.

The factor g(1) = 220 is obtained, for example, by considering bipartite BNs with V = 20 binary (S = 2) root
nodes. Figure 7 also shows how the growth rate g0(x) changes when the parameters � and  are varied. Let us �rst
vary � as shown in Figure 7. By increasing � from � = 5 to � = 15 while keeping  = 0:3 constant, the x-location of
maximal growth rate g0(x) is increased as well. However, the value of g0(x) at its maximum does not change. Let us
next vary  as is also illustrated in Figure 7. As  decreases from  = 0:3 to  = 0:2, while � = 5 is kept constant,
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the x-location of maximal g0(x) increases. In addition, the maximal value of g0(x) decreases with  decreasing, and
generally growth gets more gradual as  decreases.
In the context of BNs, the independent variable x for the growth curve g(x) may be parametrized using x = C,

x = C=V , x = E=V = CP=V , or x = E(W ), depending on the data available and the purpose of the model. We
now introduce, for BPART, a total growth curve model that includes a Gompertz growth curve.

Theorem 20 (BPART Gompertz growth curve) The total growth curve gT (x) for BPART(V , C, P , S), assuming
Gompertz growth for root cliques and where x = C is the independent variable, is

gT (x) = S
V e��e

�x
+ xSP+1: (16)

Proof. Since BPART BNs are bipartite, the growth curve has the form gT (x) = gR(x) + gM (x), where gR(x) =
gR(1)e��e

�x
because we have the Gompertz growth curve. For BPART(V , C, P , S) we have gR(1) = SV , and

therefore gR(x) = SV e��e
�x

for appropriate choices of � and . Total mixed clique size is C � SP+1 [37], and
hence gM (x) = xSP+1. By forming gR(x) + gM (x) we obtain the desired result (16).
Analytical growth models or growth curves have been used to model growth of organisms and tissue in biology

and medicine, growth of technology use or penetration, and growth of organizations or societies including the Web
[4, 29]. However, our use of growth curves to model how clique tree size grows with x = C, x = C=V , or x = E(W )
is, to our knowledge, novel. We believe that these macroscopic, coarse-grained models of clique tree growth have
bene�ts that go well beyond strictly experimental results as well as exponential growth curves that model unrestricted
growth.
The Gompertz growth curve can be derived by solving the differential equation dg(x)=dx = ag(x), where a is

a growth coef�cient [4]. Here, a is not constant but exponentially decreasing, formally da=dx = �ka for k > 0.
These two equations can be solved to obtain (14); see [4]. While a detailed study is beyond the scope of this article, it
appears plausible that these differential equations re�ect, at a macroscopic level, clique tree clustering's formation of
cycles in a moral graph �0 along with the generation of �ll-in edges. Once one cycle appears in �0, there may be many
cycles appearing, all needing �ll-in edges. Thus, once cycle formation starts in �0, a faster than exponential growth in
root clique tree size gR(x) is realistic and indeed supported by previous experimental results [37]. This rapid growth
can be captured by Gompertz growth curves.
We emphasize that Gompertz curves do not always provide accurate models of clique tree growth. In particular,

the property g0R(x) > 0 does not re�ect reality for very small x = C. Consider the �rst few BN leaf nodes added by
BPART. When there is no leaf node and x = 0, clearly �R(0) = V and �M (0) = 0. When there is one leaf node
with P parents and x = 1, �R(1) = V � P and �M (1) = SP+1. Since �R(0) > �R(1), the contribution of the
root cliques to the total clique tree size in fact decreases from x = 0 to x = 1, and clearly this is not consistent with
g0R(x) > 0 as follows for example from (15). The situation is similar for other small values of x, see Figure 4 for
x = 2. However, this early stage of growth is perhaps the least interesting since the total clique tree size is very small
and typically not a concern in applications. Consequently, we consider this issue not to be a important limitation of
our approach, and in order to circumvent this issue in experiments we use C=V � 1=2 in our experiments below.
Finally, we note that the Gompertz growth curve has a linear form, de�ned as follow [29].

De�nition 21 (Gompertz linear form) The Gompertz linear form is

ln

�
� ln g(x)

g(1)

�
= ln(�)� x (17)

Using (17), the Gompertz curve parameters � and  in (14) can be estimated from data using linear regression, as
we will see in Section 4. Other growth curves, including logistic and Complementary Gompertz, have forms similar
to (14) that are also useful for parameter estimation by means of linear regression [29].

3.2.2 Growth Curves for General Bayesian Networks

We now generalize from bipartite BNs to arbitrary BNs. We consider a clique tree � generated from an arbitrary BN
by clique tree clustering. One way to partition the cliques in a clique tree � = f1; : : : ; �g is by means of coloring.
Formally, we color the nodes in a graph (for us, a BN or a clique tree) as follows.

De�nition 22 (Graph coloring) Let G = (V ;E) be a graph, let � = f1; : : : ; �g be a set of colors, and let h :
V ! � be a map (or coloring) from nodes to colors. Then (G, �, h) forms a graph coloring.
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The coloring de�nes a partitioning of a graph's nodes into � partitions. De�nition 22 applies to both directed
graphs (including DAGs) and undirected graphs. For BNs we will abuse notation slightly by saying that (�, �, h) is a
graph coloring when � = (X , E, P ) is a BN; strictly speaking the coloring is in this case only for the DAG part (X ,
E) of the BN.
The following de�nition of a coloring h partitions nodes into root nodes and non-root nodes.

De�nition 23 LetG = (V ;E) be a DAG and let � = f1; 2g be a set of colors. The coloring h : V ! � re�ects the
root versus non-root status for any V 2 V , and is de�ned as

h(V ) =

�
1 if i(V ) = 0
2 if i(V ) > 0 :

Similar to De�nition 23, one can de�ne a coloring that partitions nodes into leaf nodes and non-leaf nodes.
How does graph coloring apply to BNs and their clique trees? A clique in a clique tree of a BN � consists of one

or more BN nodes, and these nodes may or may not have different colors as induced by a graph coloring (�, �, h).
To re�ect this, we introduce the concept of a color combination for a coloring, and have the following obvious result.

Proposition 24 Let (G, �,h) be a graph coloring and let � = j�j. The number of (non-empty) color combinations is

�(�) = 2� � 1.

Similar to De�nition 17, we partition the cliques, now according to color combinations. Formally, this amounts to
forming subsets of cliques �i for 1 � i � �(�) such that � = �1 [ � � � [ ��(�) and �i \ �j = ? for i 6= j. Assuming
that BNs are randomly distributed, we let Ki be the random size of the cliques having the i-th color combination. By
summing, we obtain a random variableKT representing the total clique tree size:

KT =
�(�)P
i=1

Ki: (18)

This sum is a generalization of (11), which applies to the bipartite case.
For each possible color combination, and re�ecting the growth of the individual random variables Ki in (18), we

introduce a separate growth curve gi with parameters �i as follows.

De�nition 25 Let (G, �, h) be a graph coloring with � = j�j and let gi : R! R be a map with parameters �i. Then

g(x;�) =
�(�)P
i=1

gi(x;�i);

where g : R! R and � = (�1; : : : ;��(�)), is a total growth curve.

In words, De�nition 25 adds up the growth curves for each color combination. A color combination corresponds
to a type of clique. In the bipartite case one could have one color combination for mixed cliques and another color
combination for root cliques; see De�nition 23. We place no restrictions on the partitioning, but for our purposes it
typically makes sense to (i) let the coloring re�ect the structure of a graph and (ii) only introduce as many colors as is
needed. In this manner, we decompose the problem of estimating growth in total clique tree size into sub-problems of
estimating growth curves for smaller pieces of clique trees.

4 Experiments
In the experiments we address the following questions: How well do Gompertz growth curves �t sample data compared
to alternative growth curve models? How well do Gompertz growth curves match sample data in the form of clique
trees generated from bipartite Bayesian networks using tree clustering, when the independent parameter as well as
the nature of the sample data points are varied? In answering these questions, we extend and complement previous
experimental results [37] by: (i) introducing restricted growth curves (including restricted Gompertz growth curves)
in addition to sample means and unrestricted exponential growth curves; (ii) using a greater range of values for C=V ;
(iii) considering both V = 20 and V = 30; (iv) investigating E(W ) in addition to C=V as the independent parameter;
and (v) using as the dependent parameter the total clique tree size rather than the size of the optimal maximal clique
in a clique tree. Clique trees were generated, for sample BNs generated using BPART as indicated below, using an
implementation of the HUGIN clique tree clustering algorithm. Clique trees were optimized heuristically, using the
minimum �ll-in weight triangulation heuristic, as treewidth computation is NP-complete.

14



Figure 8: Experimental results for bipartite BNs with V = 30 root nodes and varying number of leaf nodes. Left:
Comparison of Gompertz and other growth curves with the sample means. The superior �t of the Gompertz curve is
re�ected in its better R2 value, namely R2 = 0:99948. Right: Linear forms showing how the growth curves to the left
were obtained.

4.1 Comparison between Growth Models for Multiple BNs
The purpose of the �rst set of experiments was to compare the Gompertz growth model with a few alternatives:
Exponential, logistic, and complementary Gompertz. Here, we report on Bayesian networks generated using the
signature BPART(30, C, 2, 2) with varying values for C. For each C=V -level considered, 100 BNs were sampled
using BPART.
We now present the results of the HUGIN experiments. In the left panel of Figure 8, sample means �̂R and

corresponding points from analytical growth curves as a function of E(W ) are presented. The right panel of Figure
8 shows how the growth curves to the left were obtained using linear forms such as (17). The following Gompertz
growth curve was obtained

gR(x) = 2
30 � exp(�19: 14� exp(�0:005874x));

where x = E(W ): The parameters � and  were for the other growth curves computed in a similar manner. Clearly,
the Gompertz curve �ts the data much better than the alternative growth curves analyzed, with R2 = 0:9995 (for
Gompertz) versus R2 = 0:9413 (for logistic) and R2 = 0:9407 (for Complementary Gompertz). The excellent �t can
also easily be seen by considering the sample means along with the corresponding data points for the Gompertz curve
in the left panel of Figure 8.

4.2 Gompertz Growth Model Details for Multiple BNs
In a second set of experiments, Bayesian networks were generated using BPART(20, C , 2, 2) with varying values
for C. For each C=V -level, 100 BNs were sampled using BPART. Using this relatively low value for V allowed us
to generate BNs for which the generated clique trees did not exhaust the computer's memory even for very large C,
thus supporting a comprehensive analysis using Gompertz growth curves with both x = C=V and x = E(W ) as
independent variables.
Figure 9 illustrates the results of these experiments. Here, the left column presents Gompertz growth curves, while

the right column illustrates how these growth curves were obtained. In the top row of Figure 9, sample means as well
as corresponding points from a Gompertz growth curve as a function of C=V -ratio is presented. As a baseline, an
exponential interpolation curve for the sample means is also provided. Empirically, the Gompertz growth curve was
found to be

g(x) = 220 � exp(�9: 906� exp(�0:1118x));

where x = C=V and withR2 = 0:993477. The values of � = e2:293 = 9: 906 and  = 0:1118 were obtained from the
Gompertz linear form as illustrated to the top right in Figure 9, based on sample means for the clique tree root cliques
and the linear regression result ln(�)� x = �0:1118x+ 2:293.
In the bottom row of Figure 9, we plot the expected number of moral edges E(W ) along the x-axis. Note that the

right-most sample average in the bottom row of Figure 9, at x = E(W ) � 123, corresponds to the sample average at
C=V = 10 in the top row of Figure 9. We present sample means along with the corresponding points from a Gompertz
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Figure 9: Empirical results for bipartite Bayesian networks generated with V = 20 root nodes and a varying number
of leaf nodes C. Top left: Gompertz growth curve as a function of the C=V -ratio. Top right: Gompertz growth
curve's linear form as a function of the C=V -ratio; used to create the Gompertz growth curve to the left. Bottom left:
Gompertz growth curve as a function of E(W ). Bottom right: Gompertz growth curve's linear form as a function of
E(W ); used to create the Gompertz growth curve to the left.

growth curve as a function of E(W ); an exponential regression curve is presented as a baseline. Here, the Gompertz
growth curve was empirically determined to be

gR(x) = 2
20 � exp(�12: 43� exp(�0:01187x));

where x = E(W ) and with R2 = 0:999215. The parameters � and  were computed in a similar manner to above and
as summarized to the bottom right in Figure 9.
We now revisit the three broad growth stages discussed in Section 3 in terms of Figure 9. The sample means

show an easy-hard-harder pattern, or monotonically increasing clique tree sizes, along these stages. The initial growth
stage, where the C=V -ratio is �low� (for P = 2, up to approximately C=V � 1), is characterized by �few� leaf
nodes relative to the number of root nodes. In the rapid growth stage, the C=V -ratio is �medium� (for P = 2, from
approximately C=V � 1 to say C=V � 20) and non-trivial root cliques appear. As can be seen from the sample
means to the left in Figure 9, growth is initially faster than exponential and then slows down. Clearly, the Gompertz
growth curves give much better �ts than the respective exponential curves for both C=V and E(W ). The saturated
growth stage, where the C=V -ratio is �high�, is characterized by slow or no growth due to saturation. At saturation,
there is one root clique  with j
 j = 220, hence there is no room for further growth. In Figure 9, we may say that
saturation starts at C=V � 20.
Figure 9 clearly shows the improved �t provided by Gompertz curves compared to exponential curves. Further,

x = E(W ) provides a better �t than x = C=V but for a narrower domain. As a heuristic, one can say that x = E(W )
is preferable for local growth models for small values of x, while x = C=V is better for global models and for large x.

4.3 Comparison between Growth Models for Individual BNs
The experimental results so far in this section have been based on sample means of clique tree sizes for BNs. What
happens when individual BNs, instead of multiple BNs, are studied using the growth curve approach? To investigate
this question, we considered in a third set of experiments BNs generated using the signature BPART(20, C ), with C
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Figure 10: Experimental results for sequences of individual bipartite BNs with V = 20 root nodes and a varying
number of leaf nodes. Comparison of Gompertz and other growth curves, as a function of C=V , is shown for two
sequences of BNs. Left: The superior �t of the Gompertz curve for one sequence of BNs is re�ected in a higher R2
value, namely R2 = 0:9571. Right: The superior �t of the Gompertz curve for another sequence of BNs is re�ected
in a higher R2 value, namely R2 = 0:971.

varying from C = 100 to C = 1200. The following protocol was followed in order to create a sequence of closely
related BNs. Starting with a sampled BPART(20, 1200) BN, 100 leaf nodes were deleted at a time, giving a sequence
of BNs consisting of a BPART(20, 1100) BN, a BPART(20, 1000) BN, and so forth, down to a BPART(20, 100) BN.
Obviously, in a real development setting the sequence of BNs might be quite different than what we used here, and in
particular a machine learning algorithm or a knowledge engineer might start with a small BN and grow it, rather than
the other way around. The manner in which the sequence of BNs is created for experimental purposes does not matter
as long as they are all BPART BNs, which they clearly are here.
Experimental results for two sequences of BNs, generated according to the above protocol, are presented in Figure

10. This �gure clearly shows the better �t provided by Gompertz curves compared to a few alternatives. The better
�t is re�ected in the higher R2 values for the Gompertz curves for both sequences. We note that the R2 values found
here, for the Gompertz curves, are smaller than theR2 values for the Gompertz curves found in Section 4.1 and Section
4.2. A key point in this regard is that each data point here represents the clique tree size of a single BN, while each
data point in Section 4.1 and Section 4.2 represents the sample mean clique tree size for 100 BNs. The poorer �t
reported here is therefore not surprising.

5 Conclusion and Future Work
Substantial progress has recently been made, both in the area of Bayesian network (BN) reasoning algorithms and
in the area of applications of BNs. Based on experience from applications, it is clear that Bayesian networks are
useful and powerful but some care is needed when constructing them. In particular, and due to the inherent compu-
tational complexity of most interesting BN queries [10, 50, 48, 1], one may want to carefully consider the issue of
scalability when developing BN-based reasoning systems for resource-bounded systems including real-time and em-
bedded systems [39, 33]. In resource-bounded systems, BN compilation approaches such as clique tree propagation
[27, 2, 23, 49] as well as arithmetic circuit propagation [12, 8, 7] are of particular interest [36]. In the clique tree
approach, which we emphasize in this article, BN computation consists of propagation in a clique tree that is compiled
from a Bayesian network. Unfortunately, a precise understanding of how varying structural parameters in BNs causes
variation in the sizes of induced optimal maximal cliques or clique tree sizes has been lagging. To attack this problem,
we have in this article investigated the clique tree clustering approach by employing restricted and unrestricted growth
curves. We have characterized the growth of clique tree size as a function of (i) the expected number of moral edges
or (ii) the C=V -ratio, where C is the number of leaf nodes and V is the number of non-leaf nodes. In this article,
we varied both (i) and (ii) by increasing the number of leaf nodes in bipartite BNs, and also discussed how the ap-
proach applies to arbitrary BNs. Gompertz growth curves have, for the bipartite BNs investigated, been shown to give
excellent �t to empirical clique tree data and they appear theoretically plausible as well.
The growth curve approach presented in this article and in an earlier paper [34] is novel and extends previous work.

In this article, we consider the expected number of moral edges E(W ) as well as the C=V -ratio, and a wide range of
C=V -ratio values. We focus on the total clique tree size as opposed to size of the largest clique in the clique tree. We
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believe that the research reported here helps to �ll a gap that appears to exist between theoretical complexity results
and empirical results for speci�c algorithms and application BNs. To �ll this gap, we have here presented an approach
that combines probabilistic analysis, restricted growth curves, and experimentation. Analytically and experimentally,
we have shown that the restricted growth curves induce three stages for growing Bayesian networks: The initial growth
stage, the rapid growth stage, and the saturated growth stage. Our growth-curve results provide more detail compared
to pure complexity-theoretic results; however they admittedly gloss over details available in the raw experimental data.
Areas for future work include the following. First, this type of approach may be utilized in trade-off studies for

the design of vehicle health management systems including diagnostic reasoners [33] as well as in the analysis of
knowledge-based model construction algorithms. In both cases there is uncertainty regarding the structure of the BNs
processed. In knowledge-based model construction, BNs are constructed dynamically, while during the early design
of health management systems there may be little information available. Second, these analytical growth curves can
also used to perform forecasts and derive requirements for BNs that have clique trees larger than what current software
or hardware are capable of supporting. Third, it would be interesting to develop more �ne-grained analytical models,
perhaps by combining analytical growth models with more extensive data mining.
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